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The Dirac radial functions are expanded in polynomial B-spline basis, transforming
the Dirac equation in a generalized eigensystem matrix problem. Due to the locality
nature of the B-spline functions the matrix representation of all the involved operators
are highly sparse. Diagonalization of the matrix equations provides the bound and con-
tinuum eigenstates. Energies and oscillator strengths for Hydrogen and Rubidium are
presented.
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1. Introduction

In our days, ultra-intense femtosecond infrared laser pulses can be pro-
duced in laboratories, rather easily. Peak intensities of the order 1020 W/cm2,
are reached with some effort. Free electrons in an electromagnetic field (EMF)
performs an oscillatory motion, where the kinetic energy, named ponderomo-
tive energy Up, is a measure of the strength of the interaction with the EMF.
When the ponderomotive energy approaches the rest energy of the electron mec

2

the theoretical treatment of the interaction process should be made relativisti-
cally, since the velocity of the electrons is regarded relativistic. Generation of
strong extreme ultraviolet (xuv) laser pulses with durations within the femto-
second range has become feasible during the development of the free electron
laser (FEL) at DESY [1]. At the same time, table-top high-order harmonic gen-
eration (HOHG) from Ti:sapphire femtosecond lasers have been proven to be
able to produce non-linear processes when interacting with atomic systems [2–4].
Radiation with these properties, offer the possibility for the exploration of highly
charged ions [5] as well as the excitation and ionization of electrons belonging to
inner-shell states of heavy atomic systems.

The rapid evolution of the attosecond technology, among others, has
provided the experimental tool for performing inner-shell spectroscopy of
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core-excited atoms, since the characteristic time constants of the relevant dynam-
ics range from femtosecond to few attoseconds [6]. Finally, the importance of the
spin-orbit coupling, a purely relativistic phenomenon, grows as the atomic num-
ber Z increases [7,8].

Inspired by the pioneer work by Johnson et al. [9], we expand the Dirac
radial equation in a finite basis set, such as the B-spline polynomials [10], trans-
forming the equations into a generalized matrix eigenvalue problem, solved by
standard diagonalization techniques. Careful normalization of the discrete states
(both bound and continuum) is taken place, in order to be able to produce
dipole matrix elements, oscillator strengths as well ionization cross sections.

First, we give the basic definitions and equations for the relativistic treat-
ment of atomic systems. In addition, formulas for the calculation of the matrix
elements (dipole allowed) and oscillator strengths between Dirac states are given.
Then we apply the finite basis (B-splines) to the Dirac radial equation for an
electron in a central potential U(r) and derive the matrix equations. And finally,
we discuss specific choices for the central potential. For example, for hydrogen-
ic systems the potential is the pure coulombing potential (U(r)= − Z/r, Z the
atomic number) while for one-electron valence atomic systems (i.e. Rb, Cs,..)
we have chosen to implement two different potentials, taken from the literature.
Atomic units (–h = me = e = 1)used through out the text.

2. Theoretical background

The field-free Dirac Hamiltonian is of the type:

HD = cα · p + βc2 + U(r) α =
[

0 σ
σ 0

]
, β =

[
1 0
0 −1

]
, (1)

where σ and 1 are the 2 × 2 Pauli and the diagonal matrices, respectively. The
central potential is given by U(r)= − Ze2/r + Vl(r), with −Ze2/r being the
nuclear potential and V (r) the ‘screening’ potential which is either a model
potential or a Dirac–Fock potential determined self-consistently.

Straightforward partial wave analysis gives for the time-independent radial
Dirac equation in a central potential:

hD(r)Pε(r) = εPε(r), P (r) =
[
G(r)

F (r)

]
(2)

with ε = E −mc2 the ‘transformed’ energy and hD given by:

hD(r) =

 U(r) c

(
− d

dr + k
r

)
c
(

d
dr + k

r

)
−2c2 + U(r)


 (3)



L.A.A. Nikolopoulos / Continuum spectrum of the Dirac radial equation 205

with the quantum number k being the relativistic analog of the l quantum
number in the classification of the states in the Schrödinger equation (SE).
Knowledge of k is equivalent to knowledge of the quantum numbers j, l of the
j 2, l2 operators.

2.1. Relativistic dipole matrix elements

In photoionization studies the accurate determination of the dipole matrix
elements 〈φf |D|φi〉 and the eigenenergies εf , εi , for each pair of the eigenfunc-
tions φi(r), φf (r), are of essential importance. For one-electron atoms, the non-
relativistic dipole operator is D = −i∇ = p, where p is the momentum operator of
the valence electron. Elementary operator algebra gives the relation 〈φi |p|φf 〉 =
i(εi − εf )〈φi |r|φf 〉, thus providing an equivalent form for the dipole matrix ele-
ments.

In the relativistic case the eigenstates are spinor states ψi(r), ψf (r), charac-
terized by the quantum numbers (n, j, l, mj ) ≡ (n, k,mj ). The relativistic transi-
tion matrix element between the states ψi, ψf , assuming photons of energy ω =
ck, polarization vector êk and in the long-wavelength (eik·r ∼1) approximation (or
dipole approximation) is given by [11]:

D
(g)

f i (µ) = i

√
ω

2c
êk · D(g)

f i (µ) = (−1)jf−mf
[
jf 1 ji

−mf µ mi
]

〈f ||D||i〉, (4)

where µ= 0,±1 denotes the spherical components of the dipole operator
D(g), g = l, v, given by:

D(g) =
{

−icα, g = v, velocity gauge,
r, g = l, length gauge.

The reduced matrix element df i = 〈f ||D||i〉, is expressed as a product of an
angular factor and a radial integral, namely:

d(g)f i = δlf li (−1)jf+1/2
√
(2jf + 1)(2ji + 1)

[
jf ji 1
− 1

2
1
2 0

]
R
(g)

f i ,

R
(l)
f i =

∫ R

0
drr

[
Gf (r)Gi(r)+ Ff (r)Fi(r)

]
,

R
(v)
f i =

∫ R

0
dr

[
(kf − ki − 1)Gf (r)Fi(r)+ (kf − ki + 1)Gi(r)Ff (r)

]
.

The partial and the multiplet oscillator strengths for a transition between
the states i ≡ (n, l), f = (n, l + 1) for one-electron atoms are given by:
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f (nlj → n, l + 1, j) = 2ω
3

1
4j (j + 1)

|R(nlj ; n, l + 1, j)|2, (5)

f (nlj → n, l + 1, j + 1) = 2ω
3

2j + 3
4(j + 1)

|R(nlj ; nl + 1j + 1)|2, (6)

f (nl → nl + 1) = 2ω
3

l + 1
4(2l + 1)

|R(nl; nl + 1)|2. (7)

3. Dirac equation and B-splines basis

3.1. Eigenenergies and radial eigenstates

Detailed presentation and application of the method has been given by Johnson
and Sapirstein in a pioneering paper [9]. However, attention has been given mainly
for the bound state of the atomic systems. Here we present a method, which is capable
to represent the continuum relativistic states at high accuracy.

The basic idea is the same as in the non-relativistic case, which is the con-
finement of the atom in a sphere (box) of radius R. This has the effect of the
finiteness of the number of the bound states (for R → ∞ this number is infinite)
and the discretization of the continuum spectrum, while the number of the con-
tinuum states remains infinite. The equations to be solved, are derived using the
action principle, which has the advantage of introducing the boundary condition
into the radial equations in a systematical manner.

Expanding the radial functions in a B-spline set of order ks, total number
ns, defined in a region [0, R], [10] as:

Gk(r) =
ns∑
i=1

p
(k)
i Bi(r), Fk(r) =

ns∑
i=1

q
(k)
i Bi(r), (8)

we obtain the 2ns × 2ns generalized eigenvalue equation, from ∂S/∂pi = 0,
∂S/∂qi = 0:

A · u(k) = εkB · u(k),
u(k) = (pk1, p

k
2, . . . , p

k
ns
, qk1 , q

k
2 , . . . , q

k
ns
), (9)

where the A,B matrices are given by:

A =

 M(U) cM

(
d
dr − k

r

)
−cM

(
d
dr + k

r

)
−2c2M(1)+ M(U)


 + AS(R) (10)

and

B =
[
M(1) 0

0 M(1)

]
. (11)
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Figure 1. Hydrogen relativistic radial bound states. The B-splines parameters were ns =100, ks =9,
R = 100 a.u. and the knotpoint distribution was linear-like.

The elements of the matrixM are given by the integralMij (q) = ∫ R
0 Bi(r)q(r)Bj (r).

The elements of the “boundary” matrix AS(R) are derived from the variatonal
equations, ∂Sb/∂pi = 0, ∂S/∂qi = 0. The solution of the above system gives ns
states with ε > 0 (positive states) and ns states with ε < 0 (negative states). As
an representative example in figure 1 we plot the small and large components of
the 1s, 2s radial functions of hydrogen. In table 1 we show eigenenergies of the
ns states of the Hydrogen, obtained with the Dirac Hamiltonian HD analytically
and numerically.

Table 1
Energies of the ns states of the Hydrogen, obtained with the
Dirac Hamiltonian HD analytically and numerically. The B-splines

parameter are ks = 9, ns = 200, R = 200 a.u. and linear grid.

ωn

ns1/2 Analytical B-splines

1 −0.50000665656957 −0.5000066565997
2 −0.12500208019145 −0.12500208018833
3 −0.055556295171932 −0.05555629517705
4 −0.031250338036512 −0.031250338031454
5 −0.020000181052151 −0.020000181060167
6 −0.01388899674244 −0.013888996751446
7 −0.010204150879325 −0.010204150944494
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3.2. Continuum states and normalization

In atomic quantum theory, bound states are normalized to unity while the
continuum eigenstates are energy normalizable. Leaving the angular part nor-
malization out of the discussion we have for the radial part of the wavefunction
〈Pa|Pb〉 = δab. The physical meaning of the calculated positive-energy wavefunc-
tions P̄εi (r) within the basis-set framework is the following: The positive-energy
solutions P̄εi (r) (normalized in unity), when divided by the weight wi which
allows integration over the continuum, represent the actual continuum Coulomb
function, of energy εi , inside the box.

Pεi (r) = AiP̄εi (r), r < R. (12)

The adoption of boundary conditions at finite radius determiners the spacing of
consecutive energy eigenvalues, or equivalently the density of states. The density
of states ρ(E) instead of the δ-function form takes now finite values, ρ(Ei) =
2/(Ei+1 −Ei−1). Choosing as normalization factor the square inverse of the den-
sity of energy, namely, Ai = 1√

ρ(εi )
=

√
2

εi+1−εi−1
for the normalization of the dis-

crete positive-energy states we obtain, 〈Pi |Pj 〉 = ρ(εi)
R→∞→ δ(εi − εj ). The limit

of this finite normalization when R → ∞ goes to δ-function as it should.

3.3. Hydrogenic atomic systems, Finite-size nucleus

The hydrogenic Dirac wavefunctions for j = 1/2 diverges near the origin
r → 0, in contrast to those of the hydrogenic Schrödinger wavefunctions, which
remains finite for l = 0. Although the divergence is quite weak, it becomes more
serious when Z increases. For Zα > 137 the formation of the j = 1/2 states
is impossible. The wavefunction inside a heavy nucleus (with finite extension) is
rather different from that of a point-like charge. To avoid this problem, we take
into account the finite charge distribution of the nucleus, which in principle, is
not well-known. A uniform distribution gives for the potential the form,

Un(r) =



− 3Z
2rc

[
1 − 1

3

(
r
rc

)2
]
, 0 � r � rc ,

U(r), r � rc ,

(13)

where rc corresponds to the nuclear charge extension, and its specific value
depends on the atomic system.

3.4. Rubidium atom

Two types of model potentials have been chosen for the study of Rubidium
(Z = 37). These potentials have been used previously by Johnson et al. [13] in
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Figure 2. Rubidium radial large components for the 5s1/2, 5p1/2 and 5p1/2 eigenstates. The B-splines
parameters were ns = 200, ks = 9, R = 300 a.u. and the knotpoint distribution was exponential-like.

Table 2
Green model potential, oscillator strengths for Rubidium. Core polarization effects
are not taken into account. For all transitions the agreement of length-velocity forms
is excellent. Experimental values (columns 2,4), taken from [14].

Rubidium, Z = 37, HD

fl(5s1/2 → np1/2) fl(5s1/2 → np3/2) ρ ≡ f3/2/f1/2

np Green Exp. Green Exp. Green Exp.

5 3.69(−1) 3.32(−1) 7.50(−1) 6.68(−1) 2.03 2.01
6 5.81(−3) 3.73(−3) 1.53(−2) 9.54(−3) 2.64 2.56
7 1.02(−3) 4.87(−4) 3.03(−3) 1.48(−3) 2.98 3.04
8 3.47(−4) 1.38(−4) 1.11(−3) 4.68(−4) 3.19 3.39
9 1.61(−4) 5.22(−5) 5.35(−4) 1.97(−4) 3.33 3.77
10 8.83(−5) 2.61(−5) 3.03(−4) 1.08(−4) 3.43 4.14
11 5.42(−5) 1.46(−5) 1.89(−4) 6.38(−5) 3.49 4.37
12 3.59(−5) 9.00(−6) 1.27(−4) 4.09(−5) 3.54 4.54
13 2.51(−5) 5.82(−6) 8.99(−5) 2.86(−5) 3.58 4.91
14 1.93(−5) 3.97(−6) 7.00(−5) 2.00(−5) 3.62 5.04

order to investigate P-violating electric dipole matrix elements in heavy alkali-like
atoms, such as Rb, Cs, Au and Th. The specific forms of those potentials read:

Tietz:

U(r) = −1
r

[
1 + Z − 1

(1 + tr)2

]
e−γ r . (14)
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Green:

U(r) = −1
r

[
1 + Z − 1

H(er/d − 1)+ 1

]
e−γ r . (15)

where H = d(Z − 1)1/3. The parameters involved in these potentials are chosen
as in the work by Johnson [13]. In figure (2) we plot the 5s1/2, 5p1/2, and 5p3/2

radial wavefunctions of Rubidium. In table (2) we give the oscillator strengths
for the Rubidium from the 5s1/2 to the states np1/2 and np3/2 n = 5, 6, . . . , 14.

4. Conclusion

A numerical method is presented capable to provide accurate relativistic
radial bound and continuum wavefunctions of a particle in a local central poten-
tial. The solution of the time-independent Dirac equation is approached through
the finite element Galerkin method. The radial solutions are expanded in a
polynomial B-spline basis, transforming the DE in a generalized eigensystem
matrix problem. Comparison with the analytical solutions of the hydrogen atom
is presented and applications for the non-hydrogenic atomic systems such as
Rb is described. Additionally, transition dipole matrix elements and oscillator
strengths between states belonging to the various partial waves are computed.
Extension of the method for the calculation of multiphoton ionization cross sec-
tion is straightforward.
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